Equations \& Constants

Metrics

M•kh dk b d c m $\cdot \mu \cdot \mathrm{n} \cdot \mathrm{p}$

Mass:
$1 \mathrm{~kg}=2.2 \mathrm{lb}$
Volume:
$1 \mathrm{gal}=4 \mathrm{qt}=3.78 \mathrm{~L}$
$1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$

Length:
1 mile $=1.61 \mathrm{~km}$
$1 \mathrm{~m}=1.09 \mathrm{yd}$
$1 \mathrm{in}=2.54 \mathrm{~cm}$

Matter

$$
\begin{aligned}
& \mathrm{D}=\frac{\mathrm{m}}{\mathrm{~V}} \\
& \mathrm{~V}_{\text {box }}=\mathrm{L} \cdot \mathrm{~W} \cdot \mathrm{H} \\
& \mathrm{~V}_{\text {cyl }}=\pi \mathrm{r}^{2} \mathrm{~h} \\
& \mathrm{~V}_{\text {sph }}=4 / 3 \pi \mathrm{r}^{3}
\end{aligned}
$$

$$
\text { charge }=(\# \text { protons })-(\# e l e c t r o n s)
$$

$$
\begin{aligned}
& \% \text { yield }=\frac{\text { experimental value }}{\text { accepted value }} \times 100 \\
& \% \text { error }=\frac{(\text { experimental }- \text { accepted })}{\text { accepted }} \times 100
\end{aligned}
$$

Temperature

$$
\begin{aligned}
& \mathrm{K}={ }^{\mathrm{o}} \mathrm{C}+273 \\
&{ }^{\circ} \mathrm{C}=\mathrm{K}-273 \\
&{ }^{\mathrm{O}_{\mathrm{F}}}=\frac{9}{5}{ }^{\circ} \mathrm{C}+32 \\
&{ }^{\circ}+32
\end{aligned}
$$

Mole Conversions

1 mole $=6.02 \times 10^{23}$ particles
1 mole $=22.4 \mathrm{~L}($ at STP $)$
1 mole $=($ molar mass $) \mathrm{g}$

Gas Laws

$$
\begin{gathered}
1 \mathrm{~atm}=101,325 \mathrm{~Pa}=101.325 \mathrm{kPa}=760 \mathrm{mmHg}=760 \mathrm{torr}=14.7 \mathrm{psi} \\
\mathrm{PV}=\mathrm{nRT} \\
R=0.0821 \frac{\mathrm{~atm} L}{\mathrm{~mol} \mathrm{~K}}=8.314 \frac{\mathrm{~Pa} \mathrm{~m}}{\mathrm{~mol} \mathrm{~K}}=62.38 \frac{\mathrm{mmHg} L}{\mathrm{~mol} \mathrm{~K}} \\
\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \quad \frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \quad \frac{\mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \quad \frac{\mathrm{~V}_{1}}{\mathrm{n}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{n}_{2}} \quad \frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}} \\
P_{\text {total }}=P_{1}+P_{2}+P_{3}+\ldots
\end{gathered}
$$

Equations \& Constants

Concentrations

$$
\begin{aligned}
& \text { Molarity }=\frac{\text { moles solute }}{\text { Liters solution }} \\
& \mathrm{pph}=\frac{\text { mass solute }}{\text { mass solution }} \times 100 \quad \mathrm{ppm}=\frac{\text { mass solute }}{\text { mass solution }} \times 1,000,000
\end{aligned}
$$

Acids and Bases
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$\mathrm{M}_{\mathrm{a}} \mathrm{V}_{\mathrm{a}}=\mathrm{M}_{\mathrm{b}} \mathrm{V}_{\mathrm{b}}$

Calorimetry

$\mathrm{q}=\mathrm{mc} \Delta \mathrm{T}$

Constants for water

Solid: $\mathrm{c}=2.09 \mathrm{~J} / \mathrm{g}^{\mathrm{O}} \mathrm{C}$
Liquid: $\mathrm{c}=4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
Gas: $\mathrm{c}=1.88 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
$\mathrm{H}_{\mathrm{f}}=334 \mathrm{~J} / \mathrm{g}$
$\mathrm{H}_{\mathrm{v}}=2260 \mathrm{~J} / \mathrm{g}$
$\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$

Solubility Rules

Compounds that contain the following ions are generally soluble in water:

Activity Series

1) alkali metals and ammonium ions: $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}, \mathrm{NH}_{4}^{+}$
2) acetate ion: $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$

K
3) nitrate ion: $\mathrm{NO}_{3}{ }^{-}$

Ba
4) halide ions (X): $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$(Insoluble exceptions: $\mathrm{AgX}, \mathrm{Hg}_{2} \mathrm{X}_{2}$,

Ca
PbX $)$, Na PbX_{2})

Mg
5) sulfate ion: SO_{4}^{-2} (Insoluble exceptions $\left.\mathrm{SrSO}_{4}, \mathrm{BaSO}_{4}, \mathrm{PbSO}_{4}\right) \quad \mathrm{Al}$

Compounds that contain the following ions are generally insoluble in Zn
water: Fe
6) carbonate ion: CO_{3}^{-2} (Soluble exceptions: see rule 1) Cd
7) chromate ion: CrO_{4}^{-2} (Soluble exceptions: rule 1) Co
8) phosphate ion: PO_{4}^{-3} (Soluble exceptions: rule 1) $\quad \mathrm{Ni}$
9) sulfide ion: S^{-2} (Soluble exceptions: rule $1, \mathrm{CaS}, \mathrm{SrS}, \mathrm{BaS}$) Sn
10) hydroxide ion: OH^{-}(Soluble exceptions: rule $1, \mathrm{Ca}(\mathrm{OH})_{2}$, Pb
$\left.\mathrm{Sr}(\mathrm{OH})_{2}, \mathrm{Ba}(\mathrm{OH})_{2}\right) \quad \mathrm{H}$
Cu
Ag
Pt
Hg
Au

