Reactions of Gases

1) Balance this equation:	N ₂ +	H ₂ >	$_{___NH_3}$, write the follow	ving molar ratios:
N ₂ / H ₂		N ₂ / NH ₃	H ₂ / NH ₃	
2) Balance this equation:	H ₂ + _	S>	H₂S, write the followin	g molar ratios:
H ₂ / H ₂ S		H ₂ /S	H ₂ S / S	
3) In a gaseous reaction, 2 m	ol NO re	eact with 1 mol	O ₂ :	
a) Given the same conditions NO gas?	s of tem		$O_2(g) \rightarrow 2 NO_2(g)$ ressure, what volume of O	₂(g) would react with 4 L
b) How many liters of O₂ are	needed '	to make 350 L	of NO ₂ ?	
4) Toxic carbon monoxide (CC oxygen gas. The CO can event converters are designed to sp	tually be	converted to (O_2 in the atmosphere. Au	
Ca	rbon mo	noxide gas + O	kygen gas → carbon dioxid	e gas
a) Write the balanced equation	on for th	nis conversion.		
b) How many moles of oxygen dioxide?	gas wou	ıld be needed to	o convert 50.0 mol carbon	monoxide to carbon
c) What volume of oxygen gas are at the same temperature			act with 968 L carbon mo	noxide? (Assume both gases
5) A common way to produce	ammonia	ı (NH3) is by th	e catalyzed reaction:	
	Ну	drogen gas + N	itrogen gas $ o$ Ammonia Go	ıs
a) Write the balanced equation	on for th	nis conversion.		
b) How many moles of hydrogen gas would be needed to convert 20.0 mol nitrogen to ammonia?				

c) What volume of hydrogen gas would be needed to react with 182 L nitrogen gas? (Assume both gases are at the same temperature and pressure.)
6a) Write a balanced equation for the synthesis of water.
b) Suppose you had 20 moles of H_2 on hand and plenty of O_2 , how many moles of H_2O could you make?
c) What is the O_2 / H_2O molar ratio?
d) Suppose you had 20 moles of O_2 and enough H_2 , how many moles of H_2O could you make?
7) Aluminum metal and hydrogen chloride react to form aluminum chloride and hydrogen gas.
a) Write the balanced equation:
b) How many moles of aluminum metal are needed to produce 3.33 moles of aluminum chloride?
c) How many moles of hydrogen chloride are needed to react with this number of moles of aluminum metal?
8) Aluminum bromide and sodium hydroxide react to form aluminum hydroxide and sodium bromide.
a) Write the balanced equation:
b) How many moles of sodium bromide can be formed from 1.55 moles of aluminum bromide?
c) How many moles of aluminum hydroxide may be formed from 4.65 moles of sodium hydroxide?