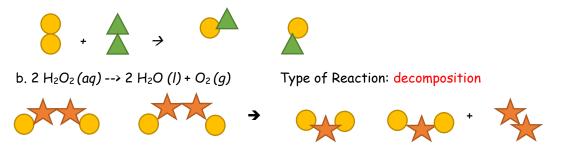
Section 1D - Review

Remember your diatomic elements! Remember what they are and what that means. Remember to apply it when writing chemical equations!!


1) What does it mean to be a diatomic element?

Some elements, when they are alone (not in a compound), have to pair up. In these cases, when you write the formula for the element, it has to be X_2 .

2) List the diatomic elements.

 $H_2, N_2, O_2, F_2, Cl_2, Br_2, I_2$

Represent each chemical equation by drawing particulate-level models of the reactants and products.
a. H₂(g) + Cl₂(g) --> 2HCl (g) Type of Reaction: synthesis

- 4) Write chemical equations that represent these word equations:
 - a. Baking soda (NaHCO₃) reacts with hydrochloric acid (HCl) to produce sodium chloride, water, and carbon dioxide.

 $NaHCO_3 + HCI --> NaCI + H_2O + CO_2$

b. During respiration, one molecule of glucose ($C_6H_{12}O_6$) reacts with six molecules of oxygen gas to produce six molecules of carbon dioxide and six molecules of water.

 $C_6H_{12}O_6 + 6 O_2 --> 6 CO_2 + 6 H_2O$

5) Balance the following equations:

a. The preparation of tin(II) fluoride, a component of some toothpastes (called *stannous fluoride* in some ingredient lists):

____Sn + 2 HF --> ____SnF₂ + ____H₂ Type of Reaction: single replacement

b. The neutralization of hydrogen phosphate by calcium hydroxide:

2 H₃PO₄ + 3 Ca(OH)₂ --> ___Ca₃(PO₄)₂ + 6 HOH Type of Reaction: double replacement

c. Burning of propane:

 $C_3H_8 + 5 O_2 --> 3 CO_2 + 4 H_2O$ Type of Reaction: combustion

d. Heating potassium chlorate:

 $_KCIO_3 --> _KCI + _O_2$ Type of Reaction: decomposition

e. Rusting (oxidation) of iron metal:

 $Fe + O_2 - Fe_2O_3$ Type of Reaction: synthesis

f. Preparing phosphoric acid (used in making soft drinks, detergents, and other products) from calcium phosphate and sulfuric acid:

__Ca₃(PO₄)₂ + 3 H₂SO₄ --> 2 H₃PO₄ + 3 CaSO₄ Type of Reaction: double replacement

6) Complete the equations by predicting the products and balancing the equations. Then, identify the type of reaction.

a. burning on octane, C₈H₁₈, a component in gasoline.

b. The breakdown of copper chloride:

__CuCl₂ --> Cu + Cl₂ Type of Reaction: decomposition

c. The reaction of an antacid with stomach acid (hydrochloric acid):

____AI(OH)₃ + 3 HCl --> AICl₃ + 3 HOH Type of Reaction: double replacement

d. The breakdown of water:

 $2 H_2 O \rightarrow 2 H_2 + O_2$ Type of Reaction: decomposition